Der Dreisatz ist eine Rechenmethode, mit der du proportionale Zusammenhänge berechnen kannst. Er wird oft verwendet, um aus drei bekannten Werten einen vierten unbekannten Wert zu bestimmen. **F... [mehr]
Ja, beim Dreisatz darfst du auf einer Seite dividieren und auf der anderen Seite multiplizieren, solange du die Gleichheit der beiden Seiten der Gleichung beibehältst. Es ist wichtig, dass du die gleichen mathematischen Operationen auf beiden Seiten der Gleichung anwendest, um die Beziehung zwischen den Größen korrekt darzustellen. Wenn du beispielsweise eine Größe durch einen Wert teilst, musst du sicherstellen, dass du die entsprechende Umrechnung auf der anderen Seite vornimmst, um die Gleichheit zu wahren.
Der Dreisatz ist eine Rechenmethode, mit der du proportionale Zusammenhänge berechnen kannst. Er wird oft verwendet, um aus drei bekannten Werten einen vierten unbekannten Wert zu bestimmen. **F... [mehr]
Der Dreisatz ist eine Methode, um proportionale Zusammenhänge zu berechnen. Er wird oft verwendet, um aus drei bekannten Werten einen vierten unbekannten Wert zu berechnen. So funktioniert der Dr... [mehr]
Um die Ausdrücke zu multiplizieren, wendest du die distributive Eigenschaft an. Das bedeutet, dass du jeden Term im ersten Ausdruck mit jedem Term im zweiten Ausdruck multiplizierst. Hier ist di... [mehr]
Um den Ausdruck \((3-2b)(5a+4-3c)\) zu multiplizieren, verwendest du die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). Hier sind die Schritte: 1. Multipliziere \(3\) mit jedem... [mehr]
Um den Ausdruck \((a+b)(4+c+d)\) zu multiplizieren, verwendest du die distributive Eigenschaft. Das bedeutet, dass du jeden Term im ersten Faktor mit jedem Term im zweiten Faktor multiplizierst. Hie... [mehr]
Um den Ausdruck \((-66) \cdot (-2) : (-3)\) zu berechnen, folge diesen Schritten: 1. Berechne \((-66) \cdot (-2)\): \[ -66 \cdot -2 = 132 \] 2. Teile das Ergebnis durch \(-3\): \[ 132... [mehr]